
Softw Syst Model (2003) / Digital Object Identifier (DOI) 10.1007/s10270-003-0038-6

Reconciling software requirements and architectures
with intermediatemodels

Paul Grünbacher1, Alexander Egyed2, Nenad Medvidovic3

1Systems Engineering and Automation, Johannes Kepler University, 4040 Linz, Austria; E-mail: gruenbacher@acm.org
2Teknowledge Corporation, 4640 Admiralty Way, Marina Del Rey, CA, USA; E-mail: aegyed@acm.org
3Computer Science Dept., Univ. of Southern California, Los Angeles, CA, USA; E-mail: neno@usc.edu

Published online: 10 December 2003 – Springer-Verlag 2003

Abstract. Little guidance and few methods are avail-
able for the refinement of software requirements into an
architecture satisfying those requirements. Part of the
challenge stems from the fact that requirements and ar-
chitectures use different terms and concepts to capture
the model elements relevant to each. In this paper we will
present CBSP, a lightweight approach intended to pro-
vide a systematic way of reconciling requirements and
architectures using intermediate models. CBSP lever-
ages a simple set of architectural concepts (components,
connectors, overall systems, and their properties) to re-
cast and refine the requirements into an intermediate
model facilitating their mapping to architectures. Fur-
thermore, the intermediate CBSP model eases captur-
ing and maintaining arbitrarily complex relationships be-
tween requirements and architectural model elements, as
well as among CBSP model elements. We have applied
CBSP within the context of different requirements and
architecture definition techniques. We leverage that ex-
perience in this paper to demonstrate the CBSP method
and tool support using a large-scale example.

Keywords: Requirements elicitation and negotiation –
Architecture modeling – Intermediate models – Trace-
ability

1 Introduction

Software systems of today are characterized by increasing
size, complexity, distribution, heterogeneity, and lifespan.
They demand careful capture and modeling of require-
ments [37, 44] and architectural designs [40, 46] early on,

This paper represents a major revision and extension of the
work that has been published in the Proceedings of the Require-
ments Engineering 2001 conference [21].

before low-level system details begin to dominate the en-
gineers’ attention and significant resources are expended
for system construction. Understanding and supporting
the interaction between software requirements and archi-
tectures remains one of the challenging problems in soft-
ware engineering research [36, 37]. Evolving and elaborat-
ing system requirements into a viable software architec-
ture satisfying those requirements is still a difficult task,
mainly based on intuition and experience. Similarly, little
guidance is available for modeling and understanding the
impact of architectural choices on the requirements. Soft-
ware engineers face some critical challenges when trying
to reconcile requirements and architectures:

• Requirements are frequently captured informally in
a natural language. On the other hand, entities in
a software architecture specification are usually spec-
ified in a more formal manner causing a semantic
gap [31].
• System properties described in non-functional require-
ments [9] are commonly hard to specify in an architec-
tural model [11, 31].
• The iterative, concurrent evolution of requirements
and architectures demands that the development of
an architecture be based on incomplete requirements.
Also, certain requirements can only be understood
after modeling or even partially implementing the sys-
tem architecture [13, 36].
• Mapping requirements into architectures and main-
taining the consistency and traceability between the
two is complicated since a single requirement may
address multiple architectural concerns and a single
architectural element (for example a COTS compon-
ent) typically has numerous non-trivial relations to
various requirements. The increasing importance of
component-based software development (CBD) em-
phasizes the need for agile techniques that allow cap-

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

ture and understanding the complex relationship be-
tween requirements and architectural elements.
• Real-world, large-scale systems have to satisfy hun-
dreds, possibly thousands of requirements [6]. It is dif-
ficult to identify and refine the architecturally relevant
information contained in the requirements due to this
scale.
• Requirements and the software architecture emerge in
a process involving heterogeneous stakeholders with
conflicting goals, expectations, and terminology [3].
Supporting the different stakeholders’ interests de-
mands finding the right balance across these often
divergent interests.

In aiming to address these challenges we have de-
veloped a lightweight method for identifying the key
architectural elements and the dependencies among
those elements, based on the stated system require-
ments. Our CBSP (Component-Bus-System-Property)
approach helps to refine a set of requirements by apply-
ing a taxonomy of architectural dimensions. The intent of
our work is to provide a generic approach that primarily
works with arbitrary informal or semi-formal require-
ments representations as well as different architecture
modeling approaches. Although requirements may also
be captured in a formal language such as KAOS [27],
informal or semi-formal approaches are still used very fre-
quently. In order to validate our research to date, we have
applied CBSP extensively in the context of EasyWin-
Win [4, 20], a groupware-supported requirements negoti-
ation approach. EasyWinWin has been selected because
it supports multi-stakeholder elicitation of requirements
and captures requirements informally but in a structured
fashion.
CBSP provides an intermediate model between the

requirements and the architecture that helps to itera-

Fig. 1. CBSP model context

tively evolve the two models [36]. For example, a set of
incomplete and quite general requirements captured as
statements in a natural language might be available. The
intermediate CBSPmodel then captures architectural de-
cisions as an incomplete “proto-architecture” that pre-
scribes [5] further architectural development. The inter-
mediate model still “looks” like requirements but “sound-
s” like an architecture. The CBSP approach also guides
the selection of a suitable architectural style to be used
as a basis for converting the proto-architectures into an
actual implementation of a software system architecture.
Figure 1 shows the CBSP model in the context of the

Twin Peaks model [36]. The Twin Peaks model suggests
that requirements and architectures are evolved itera-
tively and concurrently. In such a context, the intermedi-
ate CBSP model can be used at different levels of detail
in the modeling process. For example, it can help to refine
high-level, informal requirements early in a project and
more elaborated requirements in later iterations; or it can
also help to understand how issues arising in architecture
modeling and simulation relate to the requirements.

CBSP provides:

• a lightweightway of refining requirements using a small,
extensible set of key architectural concepts;
• mechanisms for “pruning” the number of relevant re-
quirements, rendering the technique scalable by focus-
ing on the architecturally most relevant set of artifacts;
• involvement of key system stakeholders, allowing non-
technical personnel (e.g., customers, managers, even
users) to see the impact of requirements on architec-
tural decisions if desired;
• adjustable voting mechanisms to resolve conflicts and
different perceptions among architects; and
• tools supporting selected steps in the approach (how-
ever, we would like to stress that a full automation

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

of the approach is neither possible nor desirable and
human decision-making is an important aspect of the
approach).

Together, these benefits afford a high degree of control
over refining large-scale system requirements into archi-
tectures.
The paper is organized as follows: Sect. 2 discusses

details of the CBSP approach. Section 3 describes the
application of CBSP in a large-scale example. Section 4
describes our current tool support. Related work will be
discussed in Sect. 5. Conclusions round out the paper in
Sect. 6.

2 The CBSP approach

According to (IEEE-610-1990) [23] a requirement is
“a condition or capability needed by a user to solve
a problem or achieve an objective.” Requirements largely
describe aspects of the problem to be solved and con-
straints on the solution, i.e., desired system features and
properties (both functional and non-functional [9]). Re-
quirements are derived from the concepts and relation-
ships in the problem domain (e.g., medical informatics,
E-commerce, avionics, mobile robotics).
Requirements may be simple or complex, precise or

ambiguous, stated concisely or elaborated carefully. Of
particular interest to our work is a large class of require-
ments that is predominantly stated in a natural language,
as opposed to precise formalisms. On the surface, such re-
quirements are easier to understand by humans, but they
frequently lead to ambiguity, incompleteness, and incon-
sistencies in the architecture and, eventually, the soft-
ware system. It is advisable not only to capture the out-
come of requirements elicitation, i.e., the requirements,
but also the evolution of goals of system stakeholders such
as customers, users, managers, developers [3] to preserve
the history and rationale of the requirements production
process [18].
The relationship between a set of requirements and

an effective architecture for a desired system is not read-
ily obvious. Architectures model a solution to a problem
described in the requirements and provide high-level ab-
stractions for representing the structure, behavior, and
key properties of a software system. The terminology and
concepts used to describe architectures differ from those
used for the requirements. An architecture deals with
components, which are the computational and data elem-
ents in a software system [40]. The interactions among
components are captured within explicit software connec-
tors (or buses) [46]. Components and connectors are com-
posed into specific software system topologies. Finally,
architectures both capture and reflect the key desired
properties of the system under construction (e.g., relia-
bility, performance, cost) [46]. These elements of software
architectures can be specified formally using architecture
description languages (ADLs) [31].

The above-described differences between require-
ments and architectures make it difficult to build a bridge
that spans the two. For example, it is unclear in gen-
eral whether and how a statement of stakeholder goals
should affect the desired system’s architecture; similarly,
deciding how to most effectively address a functional
requirement often boils down to relying on the archi-
tects’ intuition, rather than applying a well-understood
methodology. For these reasons, we have formulated
CBSP, a technique easing the development of an ar-
chitecture addressing a given set of requirements in
a more straightforward and consistent manner than at-
tempting to transfer directly requirements into archi-
tectures. This section will introduce the CBSP tax-
onomy of architectural dimensions and describe a process
that guides the development of the intermediate CBSP
model.

2.1 CBSP taxonomy

The fundamental idea behind CBSP is that any software
requirement may explicitly or implicitly contain informa-
tion relevant to the software system’s architecture. It is
frequently very hard to surface this information, as dif-
ferent stakeholders will perceive the same requirement in
very different ways [20]. At the same time this architec-
tural information is often essential in order to properly
understand and satisfy requirements. CBSP supports the
task of identifying architectural information contained in
the requirements and explicating it in an intermediate
model.
The CBSP dimensions include a set of general archi-

tectural concerns we have derived from existing software
architecture research [31, 33, 40, 45, 46, 49]. These dimen-
sions can be applied to systematically classify and refine
requirements and to capture architectural trade-off issues
and options (e.g., impact of a connector’s throughput on
the scalability of the topology).
Each requirement is assessed for its relevance to the

system architecture’s components, connectors (buses),
topology of the system or a particular subsystem, and
their properties. Thus, each derived CBSP artifact ex-
plicates an architectural concern and represents an early
architectural decision for the system. For example, a re-
quirement such as

R: The system should provide an interface to aWeb
browser.

can be recast into a CBSP processing component element
(Cp) and a CBSP bus element (B)

Cp: A Web browser should be used as a component
in the system.
B: A connector should be provided to ensure inter-
operability with third-party components.

It is important to emphasize that, while CBSP sup-
ports recasting requirements into more architecturally
“friendly” model elements along well-defined dimen-

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

sions, it does not prescribe a particular transformation
of a requirement. Instead, our intent is to give a soft-
ware architect sufficient leeway in selecting the most
appropriate refinement or, at times, generalization of
one or more requirements. Examples of both refine-
ment and generalization are given below. Architecting
software systems is inherently a human-intensive activ-
ity. The goal of CBSP is, therefore, not to eliminate
the role of human architects in the process. Instead,
its goals are to aid the architects in making decisions
that are effective and timely and in preserving these
decisions.
There are six possible CBSP dimensions discussed be-

low and illustrated with a simple example from a spread-
sheet manipulation application. The six dimensions in-
volve the basic architectural constructs [31] and, at the
same time, reflect the simplicity of the CBSP approach.

1. C are model elements that describe or involve an in-
dividual Component in an architecture. For example,
the requirement:

R: Allow user to directly manipulate spreadsheet
data.

may be refined into CBSP model elements describing
both processing components (Cp) and data compo-
nents (Cd)

Cp: Spreadsheet manipulation UI component.
Cd: Data for spreadsheet.

2. B are model elements that describe or imply a Bus
(connector). For example:

R: Manipulated spreadsheet data must be stored
on the file system.

may be refined into

B: Connector enabling interaction between UI
and persistency components.

3. S are model elements that describe System-wide fea-
tures or features pertinent to a large subset of the
system’s components and connectors. For example:

R: The user should be able to select appropriate
data filters and visualizations.

may be refined into

S: The system should employ a strict separa-
tion of data storage, processing, and visualiza-
tion components.

4. CP are model elements that describe or imply data
or processing Component Properties. As discussed
above, the properties in CBSP are the “ilities” in
a software system, such as reliability, portability, in-
crementality, scalability, adaptability, and evolvabil-
ity. For example:

R: The user should be able to visualize the data
remotely with minimal perceived latency.

may be refined into

CP: The data visualization component should be
efficient, supporting incremental updates.

5. BP are model elements that describe or imply Bus
Properties. For example:

R: Updates to system functionality should be en-
abled with minimal downtime.

may be refined into

BP: Robust connectors should be provided to facili-
tate runtime component addition and removal.

6. SP are model elements that describe or imply System
(or subsystem) Properties. For example:

R: The spreadsheet data must be encrypted when
dispatched across the network.

may be transformed into

SP: The system should be secure.

Note that, e.g., the BP example (5) involved refining
a general requirement into a more specific CBSP element.
On the other hand, the SP example (6) involved the gener-
alizationofa specific requirement intoaCBSPartifact.Re-
finements and generalizations such as those shown above
are a function of the needs of the specific systemunder con-
struction, the characteristics of the application domain,
and the software architect’s background and experience.
Additionally, refining or generalizing a requirement may
also require consulting the system’s customers for addi-
tional context and information.As such,while itwouldun-
doubtedly be very useful, it is unrealistic to expect that
formal rules could be provided for transforming a require-
ment intomore specific or generalCBSP elements.
A meta-model showing the different model elements

relevant to CBSP is given in Fig. 2. Requirements are
related to architectural elements such as components or
connectors via an intermediate CBSP model that acts as
a bridge. Different subtypes of CBSP elements are used to
represent different architectural dimensions listed in the
CBSP taxonomy.

2.2 The CBSP process

We also provide a step-by-step process and techniques
supporting the synthesis of the intermediate CBSPmodel
and the architecture in a collaborative manner. Fig-
ure 3 depicts process activities and deliverables using the
IDEF0 notation [24]. In an envisioned iterative life-cycle
the depicted CBSP process represents one cycle of evolv-
ing and refining an architecture out of a given set of
requirements.
Each CBSP step is discussed in more detail below. We

use ETVX (Entry, Task, Verification, and eXit) [42] to
document the steps. ETVX cells consist of four compo-
nents: (1) Entry lists all items required for the execution
of the task (e.g., people, tools, artifacts, etc.); (2)Task de-
scribes what should be done, by whom, how, and when
(this includes appropriate standards, procedures and re-
sponsibilities); (3) Verification/Validation describes all
checks and controls that help to indicate if the task is be-
ing executed properly; and (4) eXit lists criteria which

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

Fig. 2. CBSP Meta Model

Fig. 3. CBSP process

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

need to be satisfied before the task can be considered
complete and the output(s) of the task itself.

2.2.1 STEP 1: Selection of requirements for next
iteration

To reduce the complexity of addressing large numbers of
requirements, a team of architects applies the CBSP tax-
onomy to the most essential set of requirements in each
iteration. The architects eliminate requirements consid-
ered unimportant or infeasible through stakeholder-based
prioritization, thus arriving at a set of core requirements
to be considered for the next level of refinement (see
Table 1). Stakeholders rate each requirement for each of
two criteria [6]: (1) importance shows the relevance and
value to project success; while (2) feasibility addresses
perceived technical, economic, or political constraints on
implementing a requirement.

2.2.2 STEP 2: Architectural classification of
requirements

A team of architects classifies the selected requirements
using the CBSP taxonomy (see Table 2). Each require-
ments is assessedby the experts basedon the requirement’s
relevance to the CBSP dimensions, using an ordinal scale
(not=0; partially=1; largely=2; fully=3). For instance,
a requirement that is rated as partially relevant along the

Table 1. ETVX cell for step 1

Selection of requirements for next iteration

E Initial set of requirements (in informal or semi-formal notation)
Prioritization method
Voting tool

T All success-critical stakeholders eliminate unimportant and infeasible requirements

V Check selection of stakeholders
Check level of consensus among stakeholders to initiate discussions in case of diverging opinions

X Set of requirements for next-level CBSP refinement

Table 2. ETVX cell for step 2

Architectural classification of requirements

E Set of requirements for next-level CBSP refinement
CBSP taxonomy
Voting tool

T Architects classify selected requirements using the CBSP taxonomy

V Check selection of architects
Check completeness of classification

X Voting ballots
Architectural relevance profiles for all requirements

component (C) dimension implies that it has some (par-
tial) impact on one ormore architectural components.
A profile showing the aggregated architectural rele-

vance (e.g., C/B/S/CP/BP/SP) is created for each re-
quirement. Figure 4 shows some examples of relevance
profiles.

2.2.3 STEP 3: Identification and resolution of
classification mismatches

If multiple architects independently perform an archi-
tectural classification of requirements using CBSP, their
findings may diverge since they may perceive the same
statement differently. Revealing the reasons for diverg-
ing opinions is an important means of identifying misun-
derstandings, ambiguous requirements, tacit knowledge,
and conflicting perceptions [20]. The voting process is as
a mechanism to reveal dissent among the architects and
to reduce risks in requirements refinement (see Table 3).
The measured consensus among the architects serves as
a proxy for their mutual understanding of a requirement’s
meaning and their agreement on the architectural rele-
vance of a requirement. We determine the level of consen-
sus through Kendall’s coefficient of concordance, a meas-
ure of the association among stakeholders’ ratings [47].
The rules in Table 4 indicate how to proceed in

different situations: in case of consensus among archi-
tects, the requirements are either accepted or rejected

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

Fig. 4. Relevance profiles

Table 3. ETVX cell for step 3

Identification and resolution of classification mismatches

E Voting ballots
Architectural relevance profiles for all requirements

T Architects discuss reasons for diverging opinions for low-consensus items
Architects update requirements to address issues and ambiguities
Architects exclude architecturally irrelevant requirements

V Check dependencies among requirements to make sure critical requirements are not dropped

X Issues and ambiguities
Architecturally relevant requirements

Table 4. Concordance/relevance matrix

Relevance
Concordance ≥ Largely < Largely

Consensus Accept Reject
Conflict Discuss

based on the voted degree of architectural relevance.
We accept requirement as architecturally relevant if
the mean of all stakeholder is at least “largely”, oth-
erwise the requirement is rejected. If the stakehold-
ers cannot agree on the relevance of a requirement
to the architecture, they further discuss it to reveal
the reasons for the different opinions. This discussion

Table 5. ETVX cell for step 4

Architectural refinement of requirements

E Issues and ambiguities
Architecturally relevant requirements

T Architects rephrases and splits requirements that exhibit overlapping CBSP properties
Architects eliminate redundancies

V Check to make sure that redundancies are minimized

X CBSP elements
Dependencies among CBSP elements

process may also involve customers and other stake-
holders to clarify a requirement and eases the subse-
quent step of refining it into one or more architectural
dimensions.

2.2.4 STEP 4: Architectural refinement of requirements

In this activity the team of architects rephrases and splits
requirements that exhibit overlapping CBSP properties
and concerns (see Table 5). Each requirement passing the
consensus threshold (concordance and at least largely rel-
evant) may need to be refined or rephrased since it may be
relevant to several architectural concerns. For instance,
if a requirement is largely component relevant, fully bus
relevant, and largely bus property relevant, then splitting

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

it up into several architectural decisions using CBSP will
increase clarity and precision.
During this process, a given CBSP artifact may ap-

pear multiple times as a by-product of different require-
ments. For example, the following two requirements re-
sult in the identification of a Cargo data component.

R01: Support for different types of cargo.
R09: Support cargo arrival and vehicle estimation.

Such redundancies are identified and eliminated in the
intermediate CBSP model. It is also possible to merge
multiple related CBSP model elements and converge on
a single artifact (e.g., R09_Cd: Vehicle in Fig. 5).
This step of the process may be undertaken using two

slight variations. The first variation involves identifying
only the structural aspects of the system, i.e., its C, B,
and S elements. Then, for each of these elements, their
properties are identified in a separate (sub)step. This has
the advantage of separating the two concerns (structure
and functionality vs. non-functional system aspects) and
allowing an architect to focus more clearly on the “big
picture”. The second variation is to identify, in a single
step, both the system’s structural elements and their non-
functional properties. This has the advantage of stream-
lining the process and allowing the architect to focus
on a single system concern (or small set of concerns) at
a time. Both variations can be combined in one project.
For example, the team of architects may perform a single

Fig. 5. Relationships between requirements and CBSP model in cargo router example

iteration using the first variation followed by iterations
using the second variation.

2.2.5 STEP 5: Trade-off choices of architectural
elements and styles with CBSP

At this point, requirements should have been refined and
rephrased into CBSP model elements in such a manner
that no stakeholder conflicts exist and all model elements
are at least largely relevant to one of the six CBSP dimen-
sions. Based on simple CBSP model elements, a “proto-
architecture” can be derived.
Architectural styles [1, 30, 40, 46] provide rules that

exploit recurring structural and interaction patterns (re-
ferred to as “architectural patterns”) across a class of
applications and/or domains. A style guides the architec-
tural design of a system, with the promise of desirable
system qualities. At the same time, the rules guiding the
selection and application of a style (or of specific architec-
tural patterns suitable in that style) are typically semi-
formal at best, requiring significant human involvement.
Furthermore, multiple architectural styles may appear to
be (reasonably) well suited to the problem at hand, re-
quiring additional work to select the most appropriate
style. This issue is further discussed below.
Based on the dependencies among the elements in

CBSP, the rules of the selected style allow us to compose
them into an architecture. In other words, we select the

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

Table 6. ETVX cell for step 5

Trade-off choices of architectural elements and styles with CBSP

E CBSP elements
Dependencies among CBSP elements
Property to Style Mapping Table

T Architects identify candidate styles
Architects identify candidate architectural elements
Analyze properties of CBS elements

V Reconcile CBSP elements with architectural elements to avoid incompatible solutions

X Candidate styles
Candidate components
Candidate connectors

style based on (1) the characteristics of the application
domain and (2) the desired properties of the system, iden-
tified in the requirements negotiation and elaborated in
the CBSP model (see Table 6). This can, of course, result
in multiple candidate styles (or no obvious candidates).
The selection of the style is choice of the architects. By
considering the rules and heuristics of the selected style(s)
the architects start converting the CBSP model elements
into components, connectors, configurations, and data,
with the desired properties.
The specific procedure we are using for selecting the

suitable architectural style(s) is derived influenced by our
previous work [12, 31, 32, 34], from the Architect’s Auto-
mated Assistant (AAA) approach [12, 16], as well as the
work of other researchers [14, 16, 45] on characterizing ad
classifying architectural styles. AAA supports rapid eval-
uation of architectural options with respect to recurring
stylistic concerns (i.e., architectural properties) such as
concurrency, distribution, loci of control, layering, reen-
trance, latency, data transfer types, and so forth. In add-
ition to these recurring properties (which map to CBSP’s
P dimension), we augment the support provided by AAA
by decomposing architectural styles along five concerns
(which account for CBSP’s C, B, and S dimensions):
data, behavior, interaction, structure, and composition
rules. Our expanding classification of styles, which grew
out of our classification of software connectors [33], cap-
tures known styles in terms of these five concerns. To-
gether, AAA and the style classification provide a signifi-
cant aid to the architect in further refining CBSP model
elements into architectures that adhere to specific styles.
The observation that guides our selection of styles is

that, while individual architectural elements and their
composition in an architectural topology are important,
it is the properties of those elements and the topology
that guide the selection of a given style.
An example set of properties for data components,

processing components, buses, and (sub-) systems is spec-
ified as the rows of Table 7. For example, we may be
interested whether a given data component is cached ;
we may also like to know whether a given connector is

asynchronous. Note that Table 7 is clearly not complete;
many other properties for each CBSP element are pos-
sible. However, the goal is not to produce a complete such
table, for two reasons: First, a complete table may be
infeasible since it would constitute a complete character-
ization of any software system. Second, the goal of the
table is to help us identify the appropriate architectural
style. As such, it needs to be only as comprehensive as ne-
cessary to narrow down the choice of the appropriate style
based on the properties in question; if the table proves to
be insufficient in helping an architect determine a suitable
style in a given project, it is simply expanded to include
additional properties.
Table 7 shows a characterization of five architectural

styles (client-server, C2, event-based, layered, and pipe-
and-filter) based on a set of example properties. The
styles are characterized in detail by Fielding [14]. In this
paper, we only briefly summarize them:

• Client-server architectures involve synchronous call-
based interactions between service requesting clients
and service providing servers. The clients are aware of
the server’s identity and location, but not the other way
around. The clients may communicate only with the
server, but not with other clients.
• C2 architectures involve asynchronous event-based in-
teractions among components that may be both service
providers (i.e., servers) and requesters (i.e., clients)
simultaneously. Connectivity among components is
controlled by a set of layering rules and explicit, event-
broadcasting connectors.
• Event-based architectures also involve event-based in-
teractions among components. These interactions may
be synchronous or asynchronous. Each component may
provide or request services. Events are dispatched by
special-purpose (meta-level) facilities in the system.
• Layered architectures involve synchronous call-based
interactions between components that are divided into
layers. A component in a given layer may only invoke
components in the layer below it, and is invoked by the
components in the layer above it.

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

Table 7. CBSP to style mapping

CBSP Dimensions Properties Client-Server C2 Event-Based Layered Pipe-and-Filter

Data Component aggregated ++ ++ ++ + −
persistent ++ o o o o
streamed − − − − ++
cached ++ + − − −

Processing service provide/consume only ++ o o o o
Component has N interfaces ++ + ++ − −

stateful + ++ ++ + −
Loose coupling + + ++ − ++
can be migrated + ++ ++ − −

Connector/bus synchronous ++ − + ++ −
asynchronous − ++ ++ − ++
local − ++ o ++ +
distributed ++ ++ ++ − +
secure + o o + o

(sub)System efficient o + + o −
scalable + o − − +
evolvable ++ ++ ++ − ++
portable o + o ++ o
reliable o o − o o
dynamically + ++ ++ − ++
reconfigurable

Legend: ++ extensive support + some support o neutral − no support

• Pipe-and-filter architectures involve asynchronous in-
teractions involving the exchange of untyped streams
of data between components (filters) via connectors
(pipes).

For each of these styles, we have identified the degree
to which they satisfy the properties identified in Table 7.
These (partial) characterizations of the five styles will
be used in the example in the next section to drive the
selection of the appropriate style(s) and, subsequently, ar-
chitecture(s) in an example application. Both additional
styles and additional properties should be added to the
table as the need for them arises.
The resulting architectural elements, their dependen-

cies, properties, and styles give the building blocks for
developing an architecture. At this point, the nature of
software systems demands the involvement of software ar-
chitects in order to reconcile CBSP artifacts and package
them into an effective architecture (see Sect. 3.5).

3 The Cargo Router case study

This section illustrates the development of an interme-
diate CBSP model in the context of a case study in
which we applied the CBSP approach. Our example ap-
plication is developed in collaboration with a major U.S.
software development organization. It addresses a sce-
nario in which a natural disaster results in extensive
casualties and material destruction. In response to the

situation, an international humanitarian relief effort is
initiated, causing several challenges from a software en-
gineering perspective. These challenges include efficient
routing and delivery of large amounts of material aid;
wide distribution of participating personnel, equipment,
and infrastructure; rapid response to changing circum-
stances in the field; using existing software for tasks for
which it was not intended; and enabling the interopera-
tion of numerous, heterogeneous systems employed by the
participating countries. In particular, our system (called
Cargo Router) must handle the delivery of cargo from
delivery ports (e.g., shipping docks or airports) to ware-
houses close to the distribution centers. Cargo is moved
via vehicles (e.g., trucks and trains) selected based on
terrain, weather, accessibility and other factors. Our sys-
tem must also report and estimate cargo arrival times
and vehicle status (e.g., idle, in use, under repair). The
primarily responsibility of the system’s user is to initiate
and monitor the routing of cargo through a simple user
interface.
We have performed a thorough requirements, ar-

chitecture, and design modeling exercise to evaluate
CBSP in the context of this application. We used Easy-
WinWin to identify and negotiate requirements for the
Cargo Router system. EasyWinWin is a groupware-
supported methodology [4] based on the WinWin ap-
proach [3] that enhances the directness, extent, and fre-
quency of stakeholder interactions. EasyWinWin adopts
a set of COTS groupware components (e.g., electronic

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

brainstorming, categorizing, voting, etc.) developed at
the University of Arizona and commercialized by
GroupSystems.com.
The stakeholders jointly elaborated 81 requirements.

In a first step, the team converged on 64 requirements
(79% of all requirements) by reviewing and reconcil-
ing similar or redundant ones. For instance, one stake-
holder asked to “track location of vehicles” whereas
another asked for “the system [to] enable real-time sta-
tus reports and updates on ports, warehouses, vehi-
cles, and cargo.” Obviously, both stakeholders pursued
similar requirements which were merged (after verify-
ing stakeholder consensus) into the more general re-
quirement “Support for real-time communication and
awareness.”

3.1 Selection of requirements for next iteration

The 64 requirements became the initial baseline for the
Cargo Router project and covered functional and non-
functional aspects, system interfaces, software process as-
pects, as well as time and budget constraints. To identify
the set of requirements needed for a first CBSP model in
the first iteration, we performed a joint prioritization of
the 64 requirements and selected the 25 (39%) require-
ments with the highest importance and feasibility.

3.2 Architectural classification of requirements

To surface and extract the architecturally relevant in-
formation from the pool of 25 core requirements, a vot-
ing process was initiated. Four architects classified each
requirement with respect to its architectural relevance
along the six CBSP dimensions (C/B/S/CP/BP/SP).
With four stakeholders involved, a total of 600 votes were
cast. This classification process was carried out in less
than one hour.
For instance, the requirement “Support cargo ar-

rival and vehicle availability estimation” was voted to be
strongly component-relevant by all architects, whereas
the requirement “The system must be operational within
18 months” was not voted to be architecturally rele-
vant. This does not mean that process and business
aspects are, in general, unrelated to a system’s archi-
tecture. For example, a schedule constraint may cause
architecturally-relevant requirements to be dropped or
relaxed. Some requirements also received contradictory
votes: the requirement “Automatic routing of vehicles”
was voted component relevant (Cp and Cd) by all ar-
chitects, but system property (SP) relevant by only one
architect. At the same time, there was a high degree of
consensus on other requirements. For example, since ar-
chitects voted the requirement “Support cargo arrival
and vehicle availability estimation” to be only compon-
ent relevant (largely and fully ratings), this requirement
was accepted as architecturally relevant without further
discussions.

3.3 Identification and resolution of classification
mismatches

Ambiguities in the requirements’ meanings led to several
conflicts when the architects contradicted one another in
rating the architectural relevance of requirements. For in-
stance, the architects disagreed on the system property
(SP) relevance of the requirement “Automatic routing of
vehicles,” and cast ballots for not , partial , and full ar-
chitectural relevance. The concordance matrix in Table 4
suggests that in such a situation stakeholders need to dis-
cuss the mismatch. In this particular case, the discussion
revealed different perceptions of what this requirement
implied. One stakeholder thought this requirement im-
plied that the system needs to suggest paths that vehicles
travel (e.g., via navigation points), but not their sources
and targets. Another stakeholder perceived the require-
ment such that the system would also need to suggest
the sources and destinations for vehicles. The discussion
clarified this conflict and an instant re-vote identified this
requirement as indeed system property relevant.
From the total of 150 decisions (= 25 requirements×

6 dimensions), 43 decisions (29% of all decisions) affect-
ing 19 requirements (30% of all requirements) turned out
to be controversial and needed further attention. After all
conflicts were resolved, 19 out of the original 25 require-
ments remained in the pool of architecturally relevant
requirements.

3.4 Architectural refinement of requirements

Architecturally relevant requirements explicate at least
one CBSP dimension. Often requirements address mul-
tiple dimensions. For instance, the requirement “Match
cargo needs with vehicle capabilities” was voted to be
only processing component (Cp) relevant, whereas the re-
quirement “Support cargo arrival and vehicle availabil-
ity estimation” was voted to be fully component rele-
vant, fully system relevant, and largely bus relevant. As
such, the latter requirement was much more comprehen-
sive than the former. In fact, the latter requirement even
depended on the former. For instance, the need for spe-
cial types of vehicles (e.g., to ship liquid substances) also
has an impact on delivery time. In order to better re-
late such requirements, it is necessary to refine them into
more atomic entities. For instance, the fact that cargo
arrival estimation depends on vehicle capabilities does
not imply that the former requirement fully depends on
the latter.
CBSP dimensions also play an important role in the

requirements refinement process. For example, the re-
quirement “Match cargo needs with vehicle capabilities”
was determined to be only component relevant. As such,
the requirement was analyzed and refined into the pro-
cessing component Cargo/Vehicle Matcher . This process-
ing component requires as input cargo and vehicle in-
formation, resulting in its dependency on relevant data

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

components (e.g., Cargo weight). Since some of those
data components did not exist beforehand, they were
also created. As a result, the refinement of this require-
ment produced two types of information: (1) CBSPmodel
elements (processing and components) describing archi-
tectural decisions and (2) links describing dependencies
among those model elements. The CBSP model elements
provide potential building blocks for the architecture,
whereas the CBSP dependencies help to clarify potential
control and data dependencies within the architecture.
The refinement process of a more complex require-

ment is similar but more elaborate. For instance, as dis-
cussed above, the requirement “Support cargo arrival
and vehicle availability estimation” was determined to
be C, B, and S relevant. At a high level, this require-
ment supports two processing components: Cargo Arrival
Estimator and Vehicle Availability Estimator . Cargo Ar-
rival Estimator depends on data components represent-
ing Cargo, the Vehicle carrying the cargo, and the Lo-
cation of the vehicle. Vehicle Availability Estimator only
depends on the knowledge about the vehicle and its lo-
cation (but not cargo). The above requirement was also
rated bus-relevant. This was the case because the loca-
tion of a vehicle (and its cargo) is variable as it moves.
A connector (bus) is therefore needed to allow the system
to track vehicles (recall requirement “Real-time commu-
nication and awareness”).
Figure 5 shows an excerpt of the CBSP model for

the Cargo Router example. It depicts the refinement of
six requirements into CBSP model elements. As an ex-
ample, the figure depicts the requirement “Support for
different types of cargo” (left) and shows that it was re-
fined into a simple data component called Cargo (right).
The requirement “Support cargo arrival and vehicle avail-
ability estimation” was more complex and was broken
up into several model elements including two process-
ing components and a bus component. The figure shows
that those model elements were additionally refined via
sub-elements (e.g., Vehicle) and dependencies. This addi-
tional refinement is not necessary, but can result in useful
insights into overall system interdependencies. For in-
stance, we learn that the cargo component is also needed
by other requirements, making Cargo a centerpiece of the
system. Should we later want to remove cargo descrip-
tions from the system, the existing dependencies would
allow us to reason about the impact of this removal on
other parts of the architecture and/or the requirements.
In the context of CBSP, refined model elements can be
merged in case of similarity resulting in less duplication
but more CBSP artifact dependencies (e.g., we do not cre-
ate multiple Cargo data components). As stakeholders in
our case study refined all requirements into CBSP model
elements, they identified 27 CBSP model elements across
the architecturally relevant requirements.
While refining requirements into structural CBS elem-

ents and dependencies, it becomes obvious that not all
architecturally relevant information can be expressed this

Fig. 6. Identifying properties in architecture-relevant
requirements

way. For example, the requirement “Support cargo ar-
rival and vehicle availability estimation” among other
elements resulted in a connector “Comm-Link to vehi-
cle” but this requirement also implied a central need to
access (potentially) distributed resources. The connector
must thus accommodate distributed vehicles; ergo a prop-
erty of the connector is “distributed.” Other requirements
infer additional properties. For example, automatic rout-
ing of vehicles requires access to some predefined set of
routes (or navigation points). These need to be persis-
tent; hence, the persistent property for the data compon-
ent Route. Multiple requirements may infer properties on
single structural CBS elements. For example, the require-
ment “In case of network downtime, the system should
maintain the latest known facts about [. . .] vehicles” im-
plies vehicles to “cache” data. Furthermore, the require-
ment “Vehicles are equipped with location emitters and
generally cannot receive commands during driving” im-
plies vehicles to accept “streamed” data (see Fig. 6).

3.5 Trade-off choices of architectural elements and styles
with CBSP

CBSP model elements, their dependencies, and their
properties are valuable for architecture and requirements
trade-off analyses. They are also useful in creating and
modifying architectural representations. Components
and buses typically relate to architectural elements di-
rectly, or they may encapsulate sets of architectural elem-
ents. For example, the architecture of the Cargo Router

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

will likely have a Vehicle component and a Cargo Ar-
rival Estimator component. Even dependencies derived
during the CBSP refinement are likely to infer architec-
tural data and/or control dependencies. For example, the
Cargo Arrival Estimator component was found to depend
on vehicle information. This dependency indicates a data
dependency in the architecture.
CBSP properties likely will not translate into archi-

tectural elements directly. Instead, they will imply con-
straints on architectural elements. The most obvious con-
straints on architectural elements are imposed through
architectural styles. Properties can thus be used to infer
or restrict the types of architectural styles applicable to
the CargoRouter case study. Table 8 lists properties iden-
tified above and their ability to satisfy a given architec-
tural style.
A handful of properties does not allow an architect to

derive an architectural style for a complex software sys-
tem. However, architectural styles differ in their ability
to satisfy certain properties. It follows that one can favor
some architectural styles over others if the styles favor the
desired properties. As foreshadowed above, the current
treatment of architectural styles is still largely informal.
For this reason, we do not believe that styles can be se-
lected and composed automatically from requirements.
Instead, this is the responsibility of the architect(s). How-
ever, CBSP can recommend styles based on how well they
satisfy the properties of a given system. If an architec-
tural style is consistently unsuitable for a given set of
CBS properties then clearly this style is a bad fit. Table 8
lists the properties from the Cargo Router system in the
context of the five example styles introduced in Sect. 2
and depicted in Table 7. An architect may infer from this
table that the layered style is clearly less suitable than
the client-server style for architecting this system. Not
surprisingly, none of the given styles is a perfect fit. For

Table 8. Architectural styles for cargo router

CBSP Dimensions Properties Client-Server C2 Event-Based Layered Pipe-and-Filter

Route persistent ++ o o o o
(data component)

Warehouse cached ++ + − − −
(data component)

Vehicle streamed − − − − ++
(data component) cached ++ + − − −

User Interface for Vehicle, loose coupling + + ++ − ++
Warehouse, and Route
(processing component)

Comm-Link to Vehicle distributed ++ ++ ++ − +
(connector)

System dynamic reconfigure + ++ ++ − ++
reliable o o − o o

example, the client-server style is suitable for all but the
streaming property in the Vehicle data component. This
does not necessarily imply that this style is unsuitable
for the system, only that the style needs to be somehow
adapted to accommodate this property. The client-server
style is clearly better suited than the layered style; how-
ever, the C2 and the pipe-and-filter styles are reasonable
alternatives to client-server, depending on what proper-
ties are deemed most important.
CBSP gives the architect the necessary input for de-

ciding how best to design and implement a given system
in a manner that is easier to understand than the original
requirements. It is then still the architect’s responsibility
to build the system. Both C2 and client-server were con-
sidered for the Cargo Router system in our case study,
even though the system was eventually implemented ac-
cording to the C2 style. Figure 7 depicts the resulting
architectures in both styles and shows potential solutions
to alleviate the style shortcomings. The solution on the
left of Fig. 7 implements the Cargo Router system using
the C2 architectural style primarily. We find the Esti-
mator component placed underneath the Vehicle com-
ponent in the C2 architecture following C2’s rules. C2
requires service-providing components to be put above
service-requiring components. The CBSP model elem-
ents discussed previously are either directly represented
in C2 or are grouped together into C2 elements (e.g.,
Vehicle data components, Estimator processing compo-
nents). The only CBSP artifact not represented in C2
is Cargo, which is defined using C2’s ADL [30] (not de-
picted here). The C2 architectural style dictates a strict
request/response behavior of components. It is thus not
very suitable to model the streaming behavior required
for vehicles. This problem was solved by implementing
the C2 vehicle component using the pipe-and-filter style.
Internally, Vehicle is thus able to receive streaming data

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

Fig. 7. Two cargo router architectures consistent with CBSP results

from vehicles while externally it appears to be a normal
C2 component. The combined system thus implements
all given CBS elements, dependencies, and properties de-
spite the imperfect fit of individual styles.
The solution on the right of Fig. 7 implements the

Cargo Router system primarily using the client-server
style. Instead of “hiding” the signal receiving element
as in the C2 solution, this solution models the receivers
as clients. Clients are standalone applications that in-
teract with servers. In this solution, the server is pri-
marily a database to store persistent and cached data.
The actual application used by operators of the Cargo
Router system is implemented through a separate client
that communicates with the same data server. Vehicle
and warehouse data is thus readily availably without re-
quiring the operator client to handle streaming data. It
is interesting to note that the overall client-server archi-
tecture addresses most of the properties required by the
Cargo Router: clients can be distributed, they are loosely
coupled, they can be reconfigured dynamically, and they
support persistent data. The internals of the Operator
Client thus can be implemented in the simple and effi-
cient layered architectural style that previously seemed so
unsuitable. This solution, like the previous one, demon-
strates that by carefully architecting a system, one can
accommodate a variety of properties that may even ap-
pear contradictory at times.

4 Tool support

Our ultimate goal is to provide tool support for the CBSP
approach. This section discusses tools we have devised to

support the CBSP approach. We have adopted off-the-
shelf components from GroupSystems.com’s groupware
suite and we have developed a bridge to the COTS mod-
eling tool Rational Rose to ease the transition of require-
ments into architecture and allow integration of this work
with our existing requirements [20], architecture [30], and
design tools.
Selection of requirements for next iteration. This
activity is supported as part of the EasyWinWin ap-
proach. Stakeholders use a distributed voting tool to as-
sess requirements for their importance and feasibility [6].
Voting is used to determine priorities of requirements
and to reveal conflicts, mismatching perceptions, or hid-
den assumptions. Stakeholders rate each requirement for
each of two criteria: Importance shows the relevance of
a requirement to project success; feasibility indicates per-
ceived technical or economic constraints of implement-
ing a requirement. In the voting process developers typ-
ically focus on technical issues, while clients and users
concentrate on the relevance. Requirements are automat-
ically grouped in one of four categories: “low hanging
fruit” (high importance, low expected difficulties), “im-
portant with hurdles” (high priority, difficult to realize),
“maybe later” (low-priority, maybe considered later as
easy to realize), and “forget them” (unimportant, diffi-
cult to achieve).
Architectural classification of requirements. This
step is fully tool-supported by a COTS voting tool. The
CBSP dimensions are assessed in a voting process in-
volving multiple experts. Figure 8 depicts voting results
(architectural relevance profiles) showing requirements as
not relevant (No), and partially (Pa), largely (La), or fully
(Fu) relevant .

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

Fig. 8. CBSP classification and conflict detection

Identify and resolve classification conflicts.We also
provide tool support for identifying and resolving classifi-
cation mismatches. This is achieved by highlighting con-
flicting opinions and perceptions.Different cell colors indi-
cate the level of consensus among the experts.Consensus is
indicated with green (light gray in Fig. 8), while disagree-
ment is indicated with red (dark gray in Fig. 8). The vote
spread can be displayed (small window in Fig. 8) to trigger
discussions about differences in opinion.

Fig. 9. CBSP model in IBM rational’s UML modeling tool

Architectural refinement of requirements. A pro-
totype interface to a UML modeling tool is provided to
support repository-based integration and refinement of
requirements. A bridge from the GroupSystems platform
allows translating requirements negotiation results and
the CBSP model into a UML representation (see Fig. 9).
UML stereotypes are used to extend the modeling capa-
bilities and enable artifact types such as bus property,
component, etc. Our tool support supports traceability

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

between requirements and CBSP artifacts thus easing
trace-off analyses and software evolution [11].
Trade-off choices of architectures elements and
styles with CBSP. We currently do not provide spe-
cific tool support for recommending architectural styles.
CBSP model elements and dependencies do constrain the
architectural space in a manner that potentially supports
this kind of reasoning. We intend to address this area in
our future work.

5 Related work

The work described in this paper is related to several
areas of research covering requirements, architecture, and
model transformation.
To date, we have applied CBSP in the context of the

WinWin requirements negotiation approach. WinWin is
related to other techniques that focus on capturing and
evolving stakeholder goals into requirements [10, 13, 25,
26, 35, 41, 44] (note that goals reflect the objectives of in-
dividual stakeholders and may be contradictory). We be-
lieve that CBSP would also work with these approaches.
Our work on refining requirements complements such
processes with a structured transformation technique and
tool support. Our approach is also consistent with the
PREview approach by Sommerville and Sawyer as it em-
phasizes multi-perspective requirements engineering as
well as conflict detection and resolution [48]. However,
other approaches that enable automated refinement of re-
quirements (e.g., [38]) are predicated on a more formal
treatment of requirements.
A key issue in transforming requirements into archi-

tecture and further software model elements is traceabil-
ity. Researchers have recognized the difficulties in captur-
ing development decisions across modeling model elem-
ents [17]. Gotel and Finkelstein [19] suggest a formal ap-
proach for ensuring the traceability of requirements dur-
ing development. Our approach captures extensive traces
thus satisfying many of the needs identified in [17, 19, 43].
CBSP eases capturing of trace links by narrowing the
gap between informal or semi-formal requirements and
architecture models. Traceability can be created natu-
rally with CBSP by monitoring the refinement process.
This is easy and tool supported. We also developed tech-
niques for dealing with traceability between architec-
ture, requirements, and code during software evolution
(e.g., [11]).
Within the area of software architectures, two con-

cepts provide guidance for architects in converting system
requirements into effective architectures. The first is ar-
chitectural styles [46], which capture recurring structural,
behavioral, and interaction patterns across applications
that are in some way related and/or similar. As discussed
above, we indeed make extensive use of architectural
styles in formulating an architecture from a collection of
CBSP model elements. The drawback that our approach

inherits from styles is that they are typically collections
of design heuristics, requiring extensive human involve-
ment and adding a degree of unpredictability to the task
of transforming CBSP model elements into architectures.
The second related concept is domain-specific software
architecture (DSSA) [49]. A DSSA captures a model of
the (well understood) application domain, together with
a set of recurring requirements (called reference require-
ments) and a generic architecture (called reference archi-
tecture) common to all applications within the domain.
While these DSSA model elements would make the task
of arriving at an architecture from CBSP model elements
even simpler than by leveraging styles, CBSP does not re-
quire the existence of a DSSA, nor is it restricted only to
extensively studied application domains.
Several approaches have been proposed to ease bridg-

ing requirements and architectures:
The ATAM technique [25] supports the evaluation of

architectures and architectural decision alternatives in
light of quality attribute requirements.
Nuseibeh [36] describes a twin peaks model that aims

at overcoming the often artificial separation of require-
ments specification and design by intertwining these ac-
tivities in the software development process. In line with
the twin peaks model, the CBSP approach also argues for
the iterative, concurrent development of requirements,
architectures, and the intermediate CBSP model. The
CBSP process describes one iteration in such a develop-
ment context. The intermediate CBSP model also helps
to relate architectural issues and requirements.
Hall et al. describe an extension to Jackson’s Prob-

lem Frames Approach that adopts the idea of the Twin
Peaks model supporting the iteration between problem
and solution structures [22]. The authors propose to al-
low architectural structures, services, and artifacts to be
considered as part of the problem domain rather than the
solution domain. They extend the current model of the
machine domain in problem frames to view it as an archi-
tectural engine.
Brandozzi and Perry [5] coin the term architecture

prescription language for their extension of the KAOS
goal specification language [27] towards architectural
dimensions.
Bruin et al. [7] use an approach called FS-graphs to re-

late the desired system features (e.g., quality attributes)
and solution fragments (e.g., development activities) that
effect those features. For example, a desired feature may
be “The system must be secure.” while the correspond-
ing solution fragment may be “Employ an encryption
scheme.” FS-graphs use weighted relations and provide
a set of operators (AND, OR, XOR) to relate multiple
features with multiple solution fragments. The objective
of FS-graphs is to allow reuse and composition of solution
fragments across systems with similar desired features.
As may be seen from the simple example above, unlike
CBSP, FS-graphs are not specifically geared to relating
a system’s quality requirements to its architecture, but

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

instead deal with the solution space at a much higher ab-
straction level. Bruin et al. have recently begun moving
their work in the direction of software architectures as
part of the QUASAR (QUality-driven Software ARchi-
tecture) project.
Chung et al. discuss how architectural properties such

as modifiability and performance can be modeled as
“softgoals” and how different architectural designs sup-
port these goals. Architectural decisions can be traced
back to stakeholders [8].
Franch and Maiden apply the i∗ actor-based model-

ing approach [9] for modeling software architectures, not
in terms of connectors and pipes, but in terms of actor
dependencies to achieve goals, satisfy soft goals, use and
consume resources, and undertake tasks [15].
Finally, CBSP also relates to the field of transforma-

tional programming [2, 28, 39]. The main differences be-
tween transformational programming and CBSP are in
their degrees of automation and scale. Transformational
programming strives for full automation, though its ap-
plicability has been demonstrated primarily on small,
well-defined problems [39]. CBSP, on the other hand, can
be characterized only as semi-automated; however, we
have applied it on larger problems and a more heteroge-
neous set of models, representative of real development
situations.

6 Conclusions and further work

We have introduced the CBSP (Component, Bus, Sys-
tem, Property) approach that aims at reconciling soft-
ware requirements and architectures using intermediate
models. The CBSP intermediate model still “looks” like
requirements, but already “sounds” like architecture. The
use of CBSP in refining requirements allows developers
to systematically explore and identify (1) Architectural
Elements (Components and Connectors), (2) Architec-
tural Properties (CP, BP, and SP), (3) Architectural De-
pendencies, and (4) Suitable Architectural Styles. How-
ever, the use of CBSP does not result in an architec-
ture directly. As demonstrated on the case study, CBSP
merely elicits the architectural building blocks required
to architect a given system. It is the responsibility of the
architect to then use these blocks to build an effective ar-
chitecture that satisfies CBSP’s architecturally-relevant
information and, consequently, the requirements.
The quality of the results derived through CBSP

varies depending on the capabilities of the participat-
ing developers. An experienced architect is likely to elicit
more correct CBSP information than a novice architect.
While human error cannot be eliminated in such a soft-
ware development activity, CBSP is able to deal with it
through conflict identification and resolution.
The number of artifacts produced by CBSP is related

to the size and complexity of the system. However, the
number of CBSP elements is unlikely to exceed the num-

ber of architectural elements required to build a system,
as CBSP identifies architecturally relevant information
only. We believe that CBSP is thus scalable to the extent
that the architecture is scalable. Clearly, using CBSP is
human intensive. It requires multiple architects to inves-
tigate all given requirements and refine them into CBSP
artifacts. Nonetheless, this or analogous activity must be
performed with or without CBSP; CBSP assists this pro-
cess by providing guidance and support.
We believe that, although a deliberately simple and

lightweight approach, CBSP assists in coping with the
challenges discussed in the introduction.

• Bridging different levels of formality: CBSP provides
an intermediate model that reduces the semantic gap
between high-level requirements and architectural de-
scriptions.
• Modeling non-functional requirements: CBSP allows
architects to identify and isolate “ilities” in require-
ments at the system level (SP) and architectural-
element level (CP, BP), thus improving modeling of
non-functional properties.
• Maintaining evolutionary consistency: The intermedi-
ate model between requirements and architecture pro-
duced by CBSP allows specifying more meaningful de-
pendency links that improve evolutionary consistency.
• Incomplete models and iterative development : CBSP
does not mandate that the requirements be complete.
CBSP also allows architects to maintain arbitrarily
complex dependencies between a system’s require-
ments and its architecture, thus easing iterations be-
tween the two [36].
• Handling scale and complexity: CBSP focuses only on
the most essential subset of requirements in each it-
eration and, further, on the subset of those require-
ments describing architecturally relevant properties. In
fact, each activity in the CBSP process results in filter-
ing out requirements or merging multiple requirements
into one. Voting is an important mechanism for reduc-
ing complexity by increasing focus and allowing to bet-
ter understand different stakeholder perceptions.

In our future work we intend to extend CBSP in the
following directions:

• Although successfully demonstrated in the context of
EasyWinWin and C2, we believe that CBSP has po-
tential for wider applicability as it provides a generic
framework of bridging requirements into architecture
and design. Further validation is needed by exploring
CBSP using a wider set of requirements and architec-
ture languages and methods (e.g., the UML).
• We are also aiming at improving the method to better
support capturing feedback from architecture model-
ing to requirements negotiations. Specifically, we are
looking at how findings from architectural modeling,
simulation, etc. can be captured as CBSP model elem-
ents (e.g., bus property issue, system property issue,
component option, etc.).

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

• We are interested in extending ADLs (e.g., C2) to bet-
ter support modeling of properties captured as gran-
ular CBSP model elements. To date, ADLs have been
noticeably deficient in this regard [31].
• Another thread of research is to integrate CBSP with
approaches to recover architectural models from ex-
isting systems by comparing discovered and recovered
architectural models [29].
• We are also applying the approach in different projects
to find out if CBSP taxonomies can be tailored and
optimized to different domains. Three case studies are
currently carried out.
• The tools supporting CBSP are only loosely integrated.
We will also work to improve the integration and level
of support of our current tool set.

Acknowledgements. This research has been supported by the Aus-
trian Science Fund (Erwin Schrödinger Grant 1999/J 1764 “Col-
laborative Requirements Negotiation Aids”). This material is also
based upon work supported by the National Science Foundation
under Grant No. CCR-9985441. Effort also sponsored by the De-
fense Advanced Research Projects Agency (DARPA), Rome Lab-
oratory, Air Force Materiel Command, USAF under agreement
numbers F30602-00-2-0615 and F30602-00-C-0218. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of DARPA, Rome Laboratory or the U.S. Government.

References

1. Batory D, O’Malley S (1992) The Design and Implementation
of Hierarchical Software Systems with Reusable Components.
ACM Transactions on Software Engineering and Methodology
(TOSEM) 1(4): 355–398

2. Bauer FL, Moller B, Partsch H, Pepper P (1989) Formal
Program Construction by Transformations-Computer-Aided,
Intuition-Guided Programming. IEEE Transactions on Soft-
ware Engineering 15(2): 165–180

3. Boehm BW, Egyed A, Kwan J, Port D, Shah A, Madachy R
(1998) Using the WinWin Spiral Model: A Case Study. IEEE
Computer 7: 33–44

4. Boehm BW, Grünbacher P, Briggs RO (2001) Developing
Groupware for Requirements Negotiation: Lessons Learned.
IEEE Software 18(3): 46–55

5. Brandozzi M, Perry DE (2001) Transforming Goal-Oriented
Requirement Specifications into Architecture Prescriptions.
In: Workshop “From Software Requirements to Architectures”
(STRAW’01) at ICSE 2001

6. Briggs RO, Grünbacher P (2002) EasyWinWin: Managing
Complexity in Requirements Negotiation with GSS. In: 35th
Annual Hawaii International Conference on System Sciences
(HICSS’02) – Volume 1. Big Island, Hawaii

7. de Bruin H, van Vliet H, Baida Z (2002) Documenting and
Analyzing a Context-Sensitive Design Space. In: Working
IFIP/IEEE Conference on Software Architecture (WICSA 3).
Montreal

8. Chung L, Gross D, Yu E (1999) Architectural Design to Meet
Stakeholder Requirements. In: Donohue P (ed.): Software Ar-
chitecture, Kluwer Academic Publishers, pp. 545–564

9. Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-
Functional Requirements in Software Engineering. Kluwer

10. Dardenne A, Fickas S, van Lamsweerde A (1993) Goal-
Directed Concept Acquisition in Requirement Elicitation.
In: 6th Int. Workshop on Software Specification and Design
(IWSSD 6)

11. Egyed A, Grünbacher P (2002) Automating Requirements
Traceability: Beyond the Record & Replay Paradigm. In:
17th Int’l Conf. Automated Software Engineering. IEEE CS,
Edinburgh

12. Egyed A, Medvidovic N, Gacek C (2000) A Component-Based
Perspective of Software Mismatch Detection and Resolution.
IEE Software Engineering 147(6): 225–236

13. Egyed AF, Boehm BW (1999) Comparing Software Sys-
tem Requirements Negotiation Patterns. Systems Engineering
Journal 6(1): 1–14

14. Fielding RT (2000) Architectural Styles and the Design of
Network-based Software Architectures. University of Califor-
nia, Irvine

15. Franch X, Maiden NAM (2003) Modeling Component De-
pendencies to Inform their Selection. In: 2nd International
Conference on COTS-Based Software Systems, Springer

16. Gacek C (1998) Detecting Architectural Mismatches During
Systems Composition. In: Center for Software Engineering,
University of Southern California, Los Angeles, CA 90089

17. Gieszl LR (1992) Traceability for Integration. In: 2nd Interna-
tional Conference on Systems Integration (ICSI 92)

18. Gotel O, Finkelstein A (1995) Contribution structures. In:
Second IEEE International Symposium on Requirements En-
gineering, York, England

19. Gotel OCZ, Finkelstein ACW (1994) An Analysis of the Re-
quirements Traceability Problem. In: 1st International Confer-
ence on Requirements Engineering

20. Grünbacher P, Briggs RO (2001) Surfacing Tacit Knowledge
in Requirements Negotiation: Experiences using EasyWin-
Win. In: 34th Hawaii International Conference on System
Sciences

21. Grünbacher P, Egyed A, Medvidovic N (2001) Reconciling
Software Requirements and Architectures: The CBSP Ap-
proach. In: 5th IEEE International Symposium on Require-
ments Engineering, IEEE CS

22. Hall JG, Jackson M, Laney RC, Nuseibeh B, Rapanotti
L (2002) Relating Software Requirements and Architectures
using Problem Frames. In: IEEE International Requirements
Engineering Conference (RE’02), Essen, Germany

23. IEEE-610 (1990) IEEE Standard Glossary of Software Engin-
eering Terminology. The Institute of Electrical and Electronics
Engineers

24. IEEE-1320 (1999) IEEE Standards Software Engineering:
IEEE Standard for Functional Modeling Language – Syntax
and Semantics for IDEF0. The Institute of Electrical and Elec-
tronics Engineers

25. Kazman R, Barbacci M, Klein M, Carrière SJ, Woods SG
(1999) Experience with Performing Architecture Tradeoff An-
alysis. In: International Conference on Software Engineering.
Los Angeles, CA

26. Kunz W, Rittel H (1970) Issues as elements of information sys-
tems. Center for Planning and Development Research, Univ.
of California, Berkeley

27. Lamsweerde Av, Darimont R, Letier E (1998) Managing Con-
flicts in Goal-Driven Requirements Engineering. IEEE Trans-
actions on Software Engineering 24(11): 908–926

28. Liu J, Traynor O, Krieg-Bruckner B (1992) Knowledge-Based
Transformational Programming. In: 4th International Confer-
ence on Software Engineering and Knowledge Engineering

29. Medvidovic N, Egyed AF, Grünbacher P (2003) Stemming
Architectural Erosion by Coupling Architectural Discovery
and Recovery. In: STRAW’03: Second International SofTware
Requirements to Architectures Workshop at ICSE 2003 Port-
land, Oregon. http://se.uwaterloo.ca/∼straw03/

30. Medvidovic N, Rosenblum DS, Taylor RN (1999) A Language
and Environment for Architecture-Based Software Develop-
ment and Evolution. In: International Conference on Software
Engineering. Los Angeles, CA

31. Medvidovic N, Taylor RN (2000) A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering 26(1):
70–93

32. Mehta N, Medvidovic N (2003) Composing Architectural
Styles from Architectural Primitives: Proceedings. In: ESEC/
FSE, Helsinki

P. Grünbacher et al.: Reconciling software requirements and architectures with intermediate models

33. Mehta NR, Medvidovic N, Phadke S (2000) Towards a Tax-
onomy of Software Connectors. In: 22nd International Confer-
ence on Software Engineering, Limerick, Ireland

34. Mikic-Rakic M, Mehta NR, Medvidovic N (2002) Architec-
tural style requirements for self-healing systems. In: Proceed-
ings of the Workshop on Self-Healing Systems, Charleston,
South Carolina

35. Mullery G (1979) CORE: A Method for Controlled Require-
ments Specification. In: 4th International Conference on Soft-
ware Engineering, Munich, Germany

36. Nuseibeh B (2001) Weaving Together Requirements and Ar-
chitectures. IEEE Computer 34(3): 115–117

37. Nuseibeh B, Easterbrook S (2000) Requirements Engineering:
A Roadmap. In: The Future of Software Engineering, Special
Issue 22nd International Conference on Software Engineering,
ACM-IEEE

38. Nuseibeh B, Kramer J, Finkelstein A (1994) A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specification. IEEE Transactions on Software
Engineering 20(10): 760–773

39. Partsch H, Steinbruggen R (1983) Program Transformation
Systems. ACM Computing Surveys 15(3): 199–236

40. Perry DE, Wolf AL (1992) Foundations for the Study of Soft-
ware Architectures. Software Engineering Notes

41. Potts C, Burns G (1988) Recording the reasons for design
decisions. In 10th International Conference on Software En-
gineering, IEEE Comp. Soc. Press

42. Radice R, Roth N, O’Hara A Jr, Ciarfella W (1985) A Pro-
gramming Process Architecture. IBM Systems Journal 24(2):
79–90

43. Ramesh B, Jarke M (2001) Toward Reference Models for Re-
quirements Traceability. IEEE Transactions on Software En-
gineering 27(4): 58–93

44. Robertson S, Robertson J (1999) Mastering the Requirements
Process, Addison-Wesley

45. Shaw M, Clements P (1997) A Field Guide to Boxology: Pre-
liminary Classification of Architectural Styles for Software
Systems. In: COMPSAC, 21st Int’l Computer Software and
Applications Conference

46. Shaw M, Garlan D (1996) Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall

47. Siegel S, Castellan NJ (1988) Nonparametric Statistics for the
Behavioral Sciences, McGraw-Hill, New York

48. Sommerville I, Sawyer P, Viller S (1998) Viewpoints for re-
quirements elicitation: A practical approach. In: Third IEEE
Internation Conference on Requirements Engineering (ICRE
98), Colorado Springs, IEEE CS Press

49. Tracz W (1995) DSSA (Domain-Specific Software Architec-
ture) Pedagogical Example. ACM SIGSOFT Software Engin-
eering Notes

Paul Grünbacher is an As-
sociate Professor at Johannes
Kepler University Linz and a re-
search associate at the Center for
Software Engineering (Univer-
sity of Southern California, Los
Angeles). He studied Business
Informatics and holds a Ph.D.
from the University of Linz.
Paul’s research focuses on apply-
ing collaborative methods and
tools to support and automate

complex software and system engineering activities such as
requirements elicitation and negotiation or software inspec-
tions. He is a member of ACM, ACM SIGSOFT, and IEEE.

Nenad Medvidovic is an As-
sistant Professor in the Com-
puter Science Department at the
University of Southern Califor-
nia and is a faculty member of
the USC Center for Software En-
gineering (CSE). He received his
Ph.D. in 1999 from the Depart-
ment of Information and Com-
puter Science at the University
of California, Irvine. Medvidovic
is a recipient of the 2000 Na-

tional Science Foundation CAREER award. Medvidovic’s
research interests are in the area of architecture-based soft-
ware development. His work focuses on software architec-
ture modeling and analysis; middleware facilities for ar-
chitectural implementation; product-line architectures; ar-
chitectural styles; and architecture-level support for soft-
ware development in highly distributed, mobile, resource
constrained, and possibly embedded computing environ-
ments. He is a member of the ACM, ACM SIGSOFT, and
IEEE.

Alexander Egyed received the
MS and ME degrees from the
University of Southern Califor-
nia, Los Angeles, and the Jo-
hannes Kepler University, Linz,
Austria, respectively, and re-
ceived the PhD degree from the
University of Southern Califor-
nia, Los Angeles, in computer
science in 2000. He is currently
a research scientist at Teknowl-
edge Corporation, Marina del

Rey, California. His research interests are in software model-
ing, transformation, analysis, and simulation. He is a member
of the IEEE, the IEEE Computer Society, the ACM, and the
ACM SIGSOFT.

